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Abstract. Motivated by the recent measurement of a low longitudinal polarization fraction in the decay
mode B0

d → φK∗0, which appears not to be in agreement with the standard model expectation, we analyze
this mode in the minimal supersymmetric standard model with the mass insertion approximation. Within
the standard model, with the factorization approximation, the longitudinal polarization is expected to be
fL ∼ 1 − O(1/m2

b). We find that this anomaly can be explained in the minimal supersymmetric standard
model with either the LR or the RL mass insertion approximation.

PACS. 13.25.Hw, 11.30.Er, 12.60.Jv

1 Introduction

One of the important goals of the B-factories is to verify
the standard model (SM) predictions and to serve as a
potential avenue to reveal new physics beyond the SM. A
huge collection of data in the B-sector has already been
accumulated at both the B-factories (Belle and BABAR).
This in turn has led, for the first time, to the observation
of CP violation in the B system, outside the kaon system.
In fact, the angle β of the unitarity triangle has been mea-
sured from the time dependent CP asymmetry of the gold
plated B0

d → J/ψKS mode by both Belle and BABAR,
with almost similar values. The current world average of
sin 2β is [1]

(sin 2β)b→cc̄s = 0.685 ± 0.032 , (1)

which is consistent with the SM expectation. With the
accumulation of more and more data the experimental B-
physics is now all set to enter an unmatched precision
era. Unfortunately, we have not seen any clear evidence of
physics beyond the SM so far, as far as B-physics is con-
cerned.

Already there are some more measurements available
at the B-factories, which are not as clean as the sin 2β
measurement in the golden decay mode B → J/ψKS, but
from the pattern of deviation observed it appears that these
measurements, in the long run with accumulation of more
data, may reveal the signature of new physics. One of the
modes of this kind is the decay mode B → φKS, where in
the SM one expects to obtain the same value of sin 2β from
its CP asymmetry measurements, as in the case of B →
J/ψKS, with a correction of O(λ2) [2]. The basic difference
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between these two modes is that the golden mode is tree
dominated (b → cc̄s) whereas the decay mode B → φKS
is penguin dominated (b → ss̄s). It should be recalled
here that in earlier times the deviation between these two
measurements was very large but with the accumulation
of more data the difference has reduced somewhat. The
present averaged value is [1]

(sin2β)φKS = 0.47 ± 0.19 , (2)

which has about 1σ deviation from the corresponding cc̄
measurements. In the future, even if the (sin 2β)φKS value
stabilizes around the present central value, with error bars
reduced it might show the presence of new physics (NP).
Moreover, there are other decay modes (involving the b →
ss̄s transition) where the data show a similar trend. Ex-
cept for the decay mode B0 → η′K0, the value of sin 2β
extracted from all such modes are within the 1σ deviation
from the corresponding cc̄ value [3]. The present average
value of theB0 → η′K0 mode is (sin 2β)η′K0 = 0.48±0.09,
which shows about 2.3σ deviation from (1).

The vector–vector counterpart of the seemingly prob-
lematic B → φKS decay mode, i.e., B → φK∗, governed
by the same b → ss̄s transition as in B → φKS, has also
created a lot of attention recently. Both BABAR [4] and
Belle [5] have observed this decay mode and the measured
quantities are summarized in Table 1. The measured longi-
tudinal polarization fraction in this mode is well below its
expected value [6], i.e., fL ∼ 1 − O(1/m2

b), widely known
in the literature as the polarization anomaly in B → φK∗.
In the B rest frame both the vector mesons are emitted
back-to-back and from the spin angular momentum con-
servation it follows that both the vector mesons are paired
up with the same helicity combinations (like 00, ++ and
−−, i.e., the helicity combinations out of the three pos-
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Table 1. Experimental values of branching ratio (in units of 10−6), po-
larization fractions and triple product asymmetries for the B0

d → φK∗0

mode. The Belle results for the triple product asymmetries are obtained
from combined φK∗0 and φK∗+ data

Observables BABAR [4] Belle [5] Average

B 9.2 ± 0.9 ± 0.5 10.0+1.6+0.7
−1.5−0.8 9.4 ± 0.9

fL 0.52 ± 0.05 ± 0.02 0.45 ± 0.05 ± 0.02 0.49 ± 0.04
f⊥ 0.22 ± 0.05 ± 0.02 0.30 ± 0.06 ± 0.02 0.25 ± 0.04
A‖

T −0.02 ± 0.04 ± 0.01 1
2 [0.01 ± 0.10 ± 0.02] −0.01 ± 0.03

A0
T 0.11 ± 0.05 ± 0.01 1

2 [0.16+0.16
−0.14 ± 0.03] 0.10 ± 0.04

sible helicity states for each vector meson, namely, λ =
0, + and −). In the SM, it so happens that the helic-
ity combination 00, called longitudinal, (i.e., for both the
vector mesons the spin direction is proportional to the di-
rection of motion) is almost the only preferred one and
the occurrence of two other possible helicity combinations
is suppressed by O(1/m2

B), mB being the B-meson mass.
Thus, the longitudinal polarization fraction is defined as
the ratio of the decay rate corresponding to the longitu-
dinal polarization (say ΓL) to that of the total decay rate
Γ , i.e., fL = ΓL/Γ ≈ 1. However, as seen from Table 1 its
measured value is only about ≈ 50% of the expected value.

The unexpected deviation of fL from the expected value
of O(1) is known as the polarization anomaly in B → φK∗
decay. In practice, the value of fL is slightly less than unity
(and predicted to be around 0.9) in the SM. We would like
to mention here that the polarization measurement in all
other vector–vector modes, observed so far, (e.g.,B → ρK∗
and B → ρρ) are in accordance with the SM expectations.

Speculation on the existence of newphysics inB → φK∗
can be found in [7], in the context of two scenarios beyond
the standard model (namely, R-parity violating supersym-
metry and the vector-like down quark model). The issue of
longitudinal polarization problem in theB → φK∗ process
and its implications were outlined in the review talk [8].
Recently, there have been a lot of works on this issue [9–15]
both in andbeyond the standardmodel.Tobemore specific,
what we essentially need is a destructive longitudinal com-
ponent, or an enhancement in the transverse component
or the occurrence of both of them coherently to account
for the low longitudinal polarization (or large transverse
polarization) observed in B → φK∗. But, at this stage,
because of our lack of complete understanding of quark–
hadron dynamics, it will be very hard to pinpoint the exact
nature of it. Nevertheless, at least, it will be immensely
rewarding to see if one can really afford to have a similar
behavior in some of the popular scenarios beyond the SM.
Therefore, in this paper we would like to analyze the decay
mode B0

d → φK∗ in one of the most popular scenarios be-
yond the SM, i.e., in the minimal supersymmetric standard
model with the mass insertion approximation [16,17] and
to see whether the observed polarization anomaly can be
accounted for in this model or not. It should be noted here
that the contributions arising from a gluonic dipole oper-
ator with a squark–gluino loop are enhanced by a factor
of (mg̃/mb) compared to the SM contributions due to the

chirality flip from the internal gluino propagator in the loop
and itwill interfere destructivelywith the longitudinal com-
ponent of SM amplitude for the RL mass insertion (which
is exactly what one needs, as noted earlier). Therefore, one
would naively expect that the polarization anomaly in the
B → φK∗ mode can possibly be explained by the minimal
supersymmetric standard model with RL mass insertion.

This paper in outline is as follows. In the next section
we present the basic formalism for the B → V1V2 decay
mode. In Sect. 3, we calculate the SM contribution in the
QCD factorization approach for the sake of completeness.
Section 4 contains the new physics contribution to account
for the lower longitudinal polarization and in Sect. 5, we
present our conclusions.

2 Polarization fractions and triple product
asymmetries in B → V1V2 decay

The most general covariant amplitude for the decay mode
B̄0

d → V1V2 can be described as [19]

A(B̄0
d(p) → V1(p1, ε1)V2(p2, ε2)) (3)

= ε∗
1µε

∗
2ν

[
agµν +

b

m1m2
pµ
1p

ν
2 +

ic
m1m2

εµναβp1αp2β

]
,

where p is the B-meson momentum and mi, pi and εi

(i = 1, 2) denote the masses, momenta and polarization
vectors of the outgoing vector mesons.

However, it is customary to express the angular distri-
bution of B̄0

d → V1V2, with each vector meson subsequently
decaying into two particles, in terms of the helicity ampli-
tudes usually defined as

Hλ = 〈V1(λ)V2(λ)|Heff |B̄0
d 〉 , (4)

for λ = 0,±1.
The relationship between the helicity amplitudes and

the invariant amplitudes a, b, and c are given by

H±1 = a± c
√
x2 − 1 , H0 = −ax− b(x2 − 1) , (5)

where x = (p1 · p2)/m1m2 = (m2
B −m2

1 −m2
2)/(2m1m2).

The corresponding decay rate using the helicity basis am-
plitudes can be given by

Γ =
pc

8πm2
B

(
|H+1|2 + |H−1|2 + |H0|2

)
, (6)
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where pc is the magnitude of the CM momentum of the
outgoing vector particles. It is also convenient to express
the relative decay rates with longitudinal and transverse
polarizations as

fL =
ΓL

Γ
=

|H0|2
|H+1|2 + |H−1|2 + |H0|2 ,

fT =
ΓT

Γ
=

|H+1|2 + |H−1|2
|H+1|2 + |H−1|2 + |H0|2 .

(7)

Thehelicity amplitudes H̄λ for the decayB0
d → V̄1V̄2, where

V̄1 and V̄2 are the antiparticles of V1 and V2 respectively,
have the same decomposition as (3) with a → ā, b → b̄
and c → −c̄. ā, b̄, and c̄ can be obtained from a, b and c
by changing the sign of their weak phases.

To take the advantage of more easily extracting theCP -
odd and CP -even components, the angular distribution is
often written in the transversity basis. The amplitudes in
transversity and helicity bases are related through the re-
lations

A⊥ =
H+1 −H−1√

2
,

A‖ =
H+1 +H−1√

2
, (8)

A0 = H0 .

In the transversity basis the longitudinal and the CP -odd
polarizations are given by

fL =
|A0|2

|A⊥|2 + |A‖|2 + |A0|2 ,

f⊥ =
|A⊥|2

|A⊥|2 + |A‖|2 + |A0|2 .
(9)

The triple product asymmetries (TPAs) in B̄0
d → V1V2

decays are defined as [20]

A0
T =

1
2

[
Im (A⊥A∗

0)∑
λ |Aλ|2 +

Im
(
Ā⊥Ā∗

0
)

∑
λ |Āλ|2

]
,

A‖
T =

1
2


 Im

(
A⊥A∗

‖
)

∑
λ |Aλ|2 +

Im
(
Ā⊥Ā∗

‖
)

∑
λ |Āλ|2


 ,

(10)

where λ = 0, ‖,⊥.

3 Standard model contribution

In the SM, the decay process B̄0
d → φK̄∗0 receives a

contribution from the quark level transition b → ss̄s,
which is induced by the QCD, electroweak and magnetic
penguins. The effective Hamiltonian describing the decay
b → ss̄s [21, 22] is given by

Heff =
GF√

2
VqbV

∗
qs


 10∑

j=3

CjOj + CgOg


 , (11)

where q = u, c. O3, . . . , O6 and O7, . . . , O10 are the stan-
dard model QCD and electroweak penguin operators re-
spectively, and Og is the gluonic magnetic penguin op-
erator. The values of the Wilson coefficients at the scale
µ ≈ mb in the NDR scheme are given in [23] as

C1 = 1.082 , C2 = −0.185 , C3 = 0.014 ,

C4 = −0.035 C5 = 0.009 , C6 = −0.041 ,

C7 = −0.002α , C8 = 0.054α , C9 = −1.292α ,

C10 = 0.263α , Cg = −0.143 .

(12)

We use the QCD factorization approach [21,22] to evaluate
the hadronic matrix elements, which allows us to compute
the non-factorizable corrections in the heavy quark limit.
Naive factorization is recovered in the heavy quark limit
and to the zeroth order of the QCD corrections. The decay
mode B → φK∗ has been analyzed in [15,18,24] using the
QCD factorization approach. We will first briefly discuss
the essential differences between these three approaches.
It has been shown in [24] that the magnetic dipole penguin
will contribute to all the three helicity amplitudes with
almost the same order. Later, this result has been changed
in [18] where they have shown that the magnetic penguin
will contribute only to the longitudinal polarization ampli-
tude (H0). However, very recently again there has been a
correction in [15], namely that the positive helicity ampli-
tude (H+1) also receives small but non-zero contributions
from the magnetic dipole operator. It should be noted here
that the contribution of the magnetic dipole operator to
the tranverse amplitudes are also found to be small but
non-zero in the pQCD approach by Li and Mishima [14].

Here, we will use the results of the QCD factorization
method as obtained in [15]. In this approach the helicity
amplitudes are given by

H0 = −GF√
2
VtbV

∗
ts

ã0fφ

2mK∗

×
[
(m2

B −m2
K∗ −m2

φ)(mB +mK∗)ABK∗
1 (m2

φ)

− 4m2
Bp

2
c

mB +mK∗
ABK∗

2 (m2
φ)
]
,

H±1 = −GF√
2
VtbV

∗
ts ã

±mφfφ (13)

×
[
(mB +mK∗)ABK∗

1 (m2
φ) ∓ 2mBpc

mB +mK∗
V BK∗

(m2
φ)
]
,

where ãh = ah
3 +ah

4 +ah
5 − 1

2 (ah
7 +ah

9 +ah
10) with h = 0,±1.

ABK∗
1,2 (q2) and V BK∗

(q2) are the form factors describing
the B → K∗ transitions [25] evaluated at q2 = m2

φ. The
expressions for the effective parameters ah

i appearing in
the helicity amplitudes (13) are given by [15]

ah
3 = C3 +

C4

N
+
αs

4π
CF

N
C4

(
fh
I (1) + fh

II(1)
)
,

ah
4 = C4 +

C3

N
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+
αs

4π
CF

N

(
C3
[
fh
I (1) + fh

II(1) +Gh(ss) +Gh(sb)
]

−C1

(
λu

λt
Gh(su) +

λc

λt
Gh(sc)

)

+(C4 + C6)
b∑

i=u

(
Gh(si) − 2

3

)

+
3
2

(C8 + C10)
b∑

i=u

ei

(
Gh(si) − 2

3

)

+
3
2
C9
[
esG

h(ss) + ebG
h(sb)

]
+ CgG

h
g

)
,

ah
5 = C5 +

C6

N
− αs

4π
CF

N
C6

[
fh
I (−1) + fh

II(−1)
]
,

ah
7 = C7 +

C8

N
− αs

4π
CF

N
C8

[
fh
I (−1) + fh

II(−1)
]

− α

9π
NCh

e ,

ah
9 = C9 +

C10

N
+
αs

4π
CF

N
C10

[
fh
I (1) + fh

II(1)
]

− α

9π
NCh

e ,

ah
10 = C10 +

C9

N
+
αs

4π
CF

N
C9

[
fh
I (1) + fh

II(1)
]

− α

9π
Ch

e , (14)

where λq = VqbV
∗
qs, CF = (N2 − 1)/2N and si = m2

i /m
2
b .

The QCD penguin loop functions Gh(s) are given by

G0(s) =
2
3

− 4
3

ln
µ

mb
+ 4

∫ 1

0
dx ΦV

‖ (x) g(x, s) ,

G±1(s) =
2
3

− 2
3

ln
µ

mb
(15)

+2
∫ 1

0
dx

(
g
(v)φ
⊥ (x) ± 1

4
dg(a)φ

⊥ (x)
dx

)
g(x, s) ,

with the function g(x, s) defined as

g(x, s) =
∫ 1

0
du u(1 − u) ln [s− u(1 − u)(1 − x) − iε] .

(16)
The EW penguin type diagrams induced by the operators
O1 and O2 are

Ch
e =

(
λu

λt
Gh(su) +

λc

λt
Gh(sc)

)(
C2 +

C1

N

)
. (17)

The gluonic dipole operator Og gives a tree level contribu-
tion as

G0
g = −2

∫ 1

0
dx

Φφ
‖ (x)

1 − x
,

G+
g = −

∫ 1

0
dx

(
g
(v)φ
⊥ (x) +

1
4

dg(a)φ
⊥ (x)
dx

)
1

1 − x
,

G−
g = 0 . (18)

The vertex correction factors fh
I are given by

f0
I (a) = −12 ln

µ

mb
− 18 + 6(1 − a)

+
∫ 1

0
dx Φφ

‖ (x)
(

3
1 − 2x
1 − x

lnx− 3iπ
)
,

f±1
I (a) = −12 ln

µ

mb
− 18 + 6(1 − a)

+
∫ 1

0
dx

(
g
(v)φ
⊥ (x) ± a

4
dg(a)φ

⊥ (x)
dx

)

×
(

3
1 − 2x
1 − x

lnx− 3iπ
)
. (19)

The hard spectator interaction fh
II arising from the hard

spectator interaction with a hard gluon exchange between
the vector meson and the spectator quark of the B-meson
is given by

f0
II(a) =

4π2

N

ifBfK∗fφ

h0

×
∫ 1

0
dρ
ΦB

1 (ρ)
ρ

∫ 1

0
dv
ΦK∗

‖ (v)

v̄

∫ 1

0
du
Φφ

‖ (u)

u
,

f±1
II (a) = − 4π2

N

2ifBf
⊥
K∗fφmφ

mBh±1
(1 ∓ 1)

×
∫ 1

0
dρ
ΦB

1 (ρ)
ρ

∫ 1

0
dv
ΦK∗

⊥ (v)
v̄2

×
∫ 1

0
du

(
g
(v)φ
⊥ (u) − a

4
dg(a)φ

⊥ (u)
du

)

+
4π2

N

2ifBfK∗fφmK∗mφ

m2
Bh±1

×
∫ 1

0
dρ
ΦB

1 (ρ)
ρ

∫ 1

0
dvdu

(
g
(v)K∗

⊥ (v) ± 1
4

dg(a)K∗

⊥ (v)
dv

)

×
(
g
(v)φ
⊥ (u) ± a

4
dg(a)φ

⊥ (u)
du

)
u+ v̄

uv̄2 , (20)

with v̄ = 1 − v and

h0 =
ifφ

2mK∗

[
(m2

B −m2
K∗ −m2

φ)(mB +mK∗)ABK∗
1 (m2

φ)

− 4m2
Bp

2
c

mB +mK∗
ABK∗

2 (m2
φ)
]
,

h±1 = ifφmφ

[
(mB +mK∗)ABK∗

1 (m2
φ)
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∓ 2mBpc

mB +mK∗
V BK∗

(m2
φ)
]
. (21)

The asymptotic form of the leading twist (ΦV
‖ (x), ΦV

⊥(x))

and twist-3 (g(v)
⊥ (x), g(a)

⊥ (x)) light-cone distribution am-
plitudes are defined as

ΦV
‖ (x) = ΦV

⊥(x) = g
(a)
⊥ (x) = 6x(1 − x) ,

g
(v)
⊥ (x) =

3
4

[1 + (2x− 1)2] . (22)

The light-cone projector for the B-meson in the heavy
quark limit can be expressed as [21]

MB = − ifBmB

4
[
(1+ 
v)γ5

{
ΦB

1 (ξ) + 
n−Φ
B
2 (ξ)

}]
, (23)

where ξ is the momentum fraction of the spectator quark in
the B-meson, v = (1, 0, 0, 0), n− = (1, 0, 0,−1) is the light-
cone vector. The normalization conditions are given by∫ 1

0
dξ ΦB

1 (ξ) = 1 ,
∫ 1

0
dξ ΦB

2 (ξ) = 0 . (24)

For our numerical evaluation we use∫ 1

0
dξ
ΦB

1 (ξ)
ξ

=
mB

λB
, (25)

with λB = 0.46 GeV, which parametrizes our ignorance of
the B-meson distribution amplitudes.

It should be noted that the presence of logarithmic and
linear infrared divergences in f±1

II implies that the spectator
interaction is dominated by the soft gluon exchanges in
the final states. To regulate these divergences, a cutoff
parameter of order ΛQCD/mb, with ΛQCD = 0.5 GeV has
been used.

For our numerical analysis, we use the following input
parameters. The quark masses appearing in the penguin
diagrams are pole masses and we have used the following
values (in GeV): mu = md = ms = 0, mc = 1.4 and
mb = 4.8. The decay constants used are (in GeV) fB =
0.161, fK∗ = 0.217, fφ = 0.231 and f⊥

K∗ = 0.156. The form
factors are evaluated in the light-cone sum rule analysis [26]
where the q2 dependence is given by

F (q2) = F (0) exp[c1(q2/m2
B) + c2(q2/m2

B)2] , (26)

with the parameters as given in Table 2. The particle masses
and lifetime of B0

d-meson have been taken from [27]. For
the CKM matrix elements, we have used [27]

|Vcb| = 0.0413 ± 0.0015 , ρ̄ = 0.20 ± 0.09 ,

Table 2. The parameters of the form factors describing B →
K∗ transitions

A1(0) A2(0) V (0)
F (0) 0.294 0.246 0.399
c1 0.656 1.237 1.537
c2 0.456 0.822 1.123

ρ̄ = 0.33 ± 0.05 .

With these input parameters, we obtain the branching ratio
in the SM as

B(B0
d → φK∗0) = (6.34 ± 0.46) × 10−6 , (27)

and the longitudinal and the CP -odd polarizations as

fL = 0.89 , f⊥ = 0.05 . (28)

The triple product asymmetries A(0,‖)
T (10) are found to

be identically zero.

4 New physics contributions

We now consider the contribution arising from NP. In gen-
eral the effective∆B = 1, NP Hamiltonian relevant for the
b → ss̄s transition is given by

HNP
eff ∝

[∑
i

(CNP
i Oi + C̃NP

i Õi) + CgOg + C̃gÕg

]
, (29)

whereOi (Og), are the standardmodel likeQCD(magnetic)
penguin operators with current structure (s̄b)V −A(s̄s)V ±A

and CNP
i , CNP

g are the new Wilson coefficients. The op-
erators Õi (Õg) are obtained from Oi (Og) by exchanging
L ↔ R. As discussed in [9] the NP contributions to the
different helicity amplitudes are given by

ANP(B̄0
d → φK∗0)0,‖ ∝ CNP

i − C̃NP
i ,

ANP(B̄0
d → φK∗0)⊥ ∝ CNP

i + C̃NP
i . (30)

Thus, in the presence of new physics, the different ampli-
tudes can be given by

A0,‖ = ASM
0,‖ +ANP

0,‖ = ASM
0,‖
[
1 + eiφN (r0,‖ − r̃0,‖)

]
,

A⊥ = ASM
⊥ +ANP

⊥ = ASM
⊥
[
1 + eiφN (r⊥ + r̃⊥)

]
, (31)

where rλ, with (λ = 0, ‖,⊥) are the ratio ofNP (arising from
CiOi andCgOg part of the Hamiltonian) to SM amplitudes,
r̃λ are the corresponding values arising from the C̃iÕi and
C̃gÕg part. φN is the relative weak phase between the SM
and NP amplitudes. For simplicity, we have assumed a
common weak phase for the C and C̃ contributions and a
zero strong phase between the SM and the NP amplitudes.

Thus the branching ratio is given by

B(B0
d → φK∗0) (32)

= BSM
[
1 +

∑
λR

2
λ|ASM

λ |2∑
λ |ASM

λ |2 + 2
∑

λRλ|ASM
λ |2∑

λ |ASM
λ |2 cosφN

]
,

where R‖,0 = r‖,0 − r̃‖,0 and R⊥ = r⊥ + r̃⊥ and BSM

denotes the SM branching ratio. The longitudinal and the
CP -odd polarizations now read as

fL =
|ASM

0 |2 [1 +R2
0 + 2R0 cosφN

]
∑

λ |ASM
λ |2 [1 +R2

λ + 2Rλ cosφN ]
,
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f⊥ =
|ASM

⊥ |2 [1 +R2
⊥ + 2R⊥ cosφN

]
∑

λ |ASM
λ |2 [1 +R2

λ + 2Rλ cosφN ]
. (33)

Furthermore, in the presence of NP, the triple product
asymmetries (10) are given by

A0
T =

2(R⊥ −R0) sinφN∑
λ |ASM

λ |2 [1 +R2
λ + 2Rλ cosφN ]

,

A‖
T =

2(R⊥ −R‖) sinφN∑
λ |ASM

λ |2 [1 +R2
λ + 2Rλ cosφN ]

. (34)

We now analyze the decay process B0
d → φK∗0 in the

minimal supersymmetric standard model (MSSM) with
mass insertion approximation. This decay mode receives
supersymmetric (SUSY) contributions mainly from pen-
guin andboxdiagrams containing gluino–squark, chargino–
squark and charged Higgs–top loops. Here, we consider
only the gluino contributions, because the chargino and
charged Higgs loops are expected to be suppressed by the
small electroweak gauge couplings. However, the gluino me-
diated FCNC contributions are of the order of the strong
interaction strength, which may exceed the existing lim-
its. Therefore, it is customary to rotate the effects, so
that the FCNC effects occur in the squark propagators
rather than in the couplings and to parameterize them
in terms of dimensionless parameters. Here we work in
the usual mass insertion approximation [16, 17], where
the flavor mixings i → j in the down-type squarks as-
sociated with q̃B and q̃A are parametrized by (δd

AB)ij ,
with A,B = L,R and i, j as the generation indices. More
explicitly (δd

LL)ij = (V d
L

†
M2

d̃
V d

L )ij/m
2
q̃, where M2

d̃
is the

squared down squark mass matrix and mq̃ is the average
squark mass.

Vd is thematrixwhich diagonalizes the down-type quark
mass matrix.

Thus, the new effective ∆B = 1 Hamiltonian relevant
for the B0

d → φK∗ process arising from new penguin/box
diagrams with gluino–squark in the loops is given by

HSUSY
eff = −GF√

2
VtbV

∗
ts (35)

×
[

6∑
i=3

(
CNP

i Oi + C̃NP
i Õi

)
+ CNP

g Og + C̃NP
g Õg

]
,

where Oi (Og) are the QCD (magnetic) penguin operators
and the CNP

i (Cg) are the new Wilson coefficients. The
operators Õi are obtained from Oi by exchanging L ↔ R.

To evaluate the amplitude in the MSSM, we have to first
determine the Wilson coefficients at the b quark mass scale.
At the leading order, in the mass insertion approximation,
the new Wilson coefficients corresponding to each of the
operator at the scale µ ∼ m̃ ∼ MW are given by [17,28]

CNP
3  −

√
2α2

s

4GFVtbV ∗
tsm

2
q̃

(
δd
LL

)
23

×
[
− 1

9
B1(x) − 5

9
B2(x) − 1

18
P1(x) − 1

2
P2(x)

]
,

CNP
4  −

√
2α2

s

4GFVtbV ∗
tsm

2
q̃

(
δd
LL

)
23

×
[
− 7

3
B1(x) +

1
3
B2(x) +

1
6
P1(x) +

3
2
P2(x)

]
,

CNP
5  −

√
2α2

s

4GFVtbV ∗
tsm

2
q̃

(
δd
LL

)
23

×
[

10
9
B1(x) +

1
18
B2(x) − 1

18
P1(x) − 1

2
P2(x)

]
,

CNP
6  −

√
2α2

s

4GFVtbV ∗
tsm

2
q̃

(
δd
LL

)
23

×
[
− 2

3
B1(x) +

7
6
B2(x) +

1
6
P1(x) +

3
2
P2(x)

]

CNP
g  − 2

√
2παs

2GFVtbV ∗
tsm

2
q̃

[(
δd
LL

)
23

(
3
2
M3(x) − 1

6
M4(x)

)

+
(
δd
LR

)
23

(
mg̃

mb

)
1
6

(
4B1(x) − 9

x
B2(x)

)]
, (36)

where x = m2
g̃/m

2
q̃. The loop functions appearing in these

expressions can be found in [17]. The corresponding C̃NP
i

are obtained from CNP
i by interchanging L ↔ R. It should

be noted that the (δd
LR)23 contribution is enhanced by

(mg̃/mb) compared to that of the SM and the LL insertion
due to the chirality flip from the internal gluino propagator
in the loop. Therefore, the magnetic dipole operators in su-
persymmetric model are found to contribute significantly.

The Wilson coefficients at low energy, CNP
i (µ ∼ mb),

can be obtained from CNP
i (MW ) by using the renormal-

ization group (RG) equation, as discussed in [23], as

C(µ) = U5(µ,MW )C(MW ) , (37)

where C is the 6×1 column vector of the Wilson coefficients
and U5(µ,MW ) is the five-flavor 6×6 evolution matrix. In
the next-to-leading order (NLO), U5(µ,MW ) is given by

U5(µ,MW ) (38)

=
(

1 +
αs(µ)

4π
J

)
U

(0)
5 (µ,MW )

(
1 − αs(MW )

4π
J

)
,

where U
(0)
5 (µ,MW ) is the leading order (LO) evolution

matrix and J denotes the NLO corrections to the evolution.
The explicit forms of U5(µ,MW ) and J are given in [23].

Since the Og contribution to the matrix element is αs
order suppressed, we consider only leading order RG effects
for the coefficient CNP

g , which is given by [28]

CNP
g (mb)  −0.15 + 0.70 CNP

g (MW ) . (39)

For the numerical analysis, we fix the SUSY parameter
as mq̃ = mg̃ = 500 GeV, αs(MW ) = 0.119. The abso-
lute values of the mass insertion parameters (δd

AB)23, with
A,B = (L,R), are constrained by the experimental value
of the B → Xsγ decay [17]. These constraints are very
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Fig. 1. The CP -odd polarization fraction
(f⊥) and the branching ratio of the process
B0

d → φK∗0 with LL and RR mass inser-
tions versus the weak phase φN (in degree).
The horizontal solid lines represent the ex-
perimental central value and the dashed
lines represent the 1σ range
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Fig. 2. The CP -odd and the longitudinal
polarization fractions of the process B0

d →
φK∗0 with LR and RL mass insertions

weak for LL and RR mass insertions and the existing
limits come only from their definitions |(δd

LL,RR)23| < 1.
The LR and RL mass insertions are more constrained
and for instance with mg̃  mq̃  500 GeV, we have
|(δd

LR,RL)23| ≤ 1.6 × 10−2. In our analysis, we will use
the above bounds on the mass insertion parameters, i.e.,

|(δd
LL,RR)23| < 1 and |(δd

LR,RL)23| ≤ 1.6 × 10−2 . (40)

Now substituting the values of the RG evolved Wilson
coefficients CNP

i (mb) in (14) we obtain the corresponding
ah

i ’s and hence with (8), (13) and (31) the amplitudes.
Assuming that all the mass insertion parameters (δd

AB)23
have a common weak phase, we obtain the new physics
parameters arising from the LL (LR) and RR (RL) mass
insertions as

(r0)LL = (r̃0)RR < 0.44 , (r0)LR = (r̃0)RL ≤ 1.3 ,

(r‖)LL = (r̃‖)RR < 6.2 × 10−2 ,

(r‖)LR = (r̃‖)RL ≤ 7.0 × 10−2 , (41)

(r⊥)LL = (r̃⊥)RR < 6.0 × 10−2 ,

(r⊥)LR = (r̃⊥)RL ≤ 7.2 × 10−2 .

Let us now analyze the variation of the CP -odd polariza-
tion fraction and the branching ratio in the presence of new
physics. We first consider the contributions arising from
the LL and RR mass insertions. As seen from (41), these
contributions are quite small and it is expected that they
cannot accommodate the observed large CP -odd polariza-
tion. Now using the maximum values of rλ from (41), we

plot the CP -odd polarization (f⊥) (33) and the branch-
ing ratio (32) versus the weak phase φN for three different
cases (LL, RR and in the presence of both the LL and
the RR contributions). It is seen from Fig. 1 that, indeed
the large CP -odd polarization fraction cannot be accom-
modated in these cases although the observed branching
ratio can be accommodated with LL or RR mass inser-
tions. Next we consider the contributions arising from LR,
RL and the simultaneous presence of LR and RL mass
insertions. As seen from Fig. 2, in this case the observed
CP -odd polarization fraction (f⊥) and the longitudinal
polarization fraction (fL) can be accommodated with ei-
ther LR or RL mass insertions. The branching ratio can
also be accommodated with these mass insertions as seen
from Fig. 3.

5 Conclusions

Observation of an unexpectedly small longitudinal polar-
ization (and large transverse polarization) in the penguin
dominated B → φK∗ mode poses a serious challenge both
to theorists and experimentalists in B-physics. This has
in turn ignited the desire of revealing the existence of new
physics beyond the SM. While at present there is no clear
indication of any NP but with the accumulation of more
data, if the longitudinal polarization stabilizes around the
present central value, i.e., fL = 0.5, with reduced error bars,
then this might be the first clear evidence of new physics
in the b → s penguin decay amplitudes. The polarization
measurements in various vector–vector modes undertaken
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by the ongoingB-factory experiments and the experiments
to be performed at BTeV and LHC-b will definitely be able
to guide us to an understanding of the dynamics and pos-
sibly provide us with a meaningful answer to our quest for
the existence of new physics.

We have employed supersymmetry with the mass inser-
tion approximation and shown that the low longitudinal
polarization in B0

d → φK∗0 can be accommodated in this
scenario beyond the standard model with either the LR or
the RL mass insertion approximation.

Since in the B-factory data so far we have only seen
some kind of deviation in the b → ss̄s transition measure-
ments it may be worthwhile to continue our effort in this
direction and check carefully if we can really observe NP in
this type of penguin induced transitions. If NP is present
in the b → ss̄s transitions and indeed if it is responsible for
the observed lower longitudinal polarization then we ex-
pect to see the same effect of lower longitudinal polarization
in another charmless vector–vector mode, i.e., Bs → φφ,
which is governed by the same penguin induced b → ss̄s
transition. Already the branching ratio for this mode has
been measured by the CDF Collaboration [29,30] and we
are looking forward to the polarization measurements in
this mode. This in turn, at least, will provide us with a
clear picture of the charmless vector–vector transitions in-
duced by the b → ss̄s penguins and possibly revealing the
existence of NP in penguin induced b → ss̄s transitions. If
confirmed, the polarization anomaly along with the devi-
ation measured in sin 2β measurements may bring us one
step further towards the establishment of NP in the pen-
guin induced b → ss̄s transitions. It is therefore urgently
needed to closely examine experimentally all the possible
charmless vector–vector modes to confirm or rule out the
existence of new physics.
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